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Mutual learning in a tree parity machine and its application to cryptography
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Mutual learning of a pair of tree parity machines with continuous and discrete weight vectors is studied
analytically. The analysis is based on a mapping procedure that maps the mutual learning in tree parity
machines onto mutual learning in noisy perceptrons. The stationary solution of the mutual learning in the case
of continuous tree parity machines depends on the learning rate where a phase transition from partial to full
synchronization is observed. In the discrete case the learning process is based on a finite increment and a full
synchronized state is achieved in a finite number of steps. The synchronization of discrete parity machines is
introduced in order to construct an ephemeral key-exchange protocol. The dynamic learning of a third tree
parity machine~an attacker! that tries to imitate one of the two machines while the two still update their weight
vectors is also analyzed. In particular, the synchronization times of the naive attacker and the flipping attacker
recently introduced in Ref.@9# are analyzed. All analytical results are found to be in good agreement with
simulation results.
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I. INTRODUCTION

Artificial neural networks are known for their ability t
learn @1,2#. They produce an output from a given input a
cording to some weight vector and a transfer function. T
ditionally, there are two types of learning. One type is un
pervised learning where a network receives input and trie
learn about the input distribution. The other type is t
teacher-student scenario, when the so-called teacher rec
inputs, produces outputs and gives another machine, the
called student, both the inputs and their assigned output
such a scenario the teacher is static, i.e., its weight ve
does not change during the learning, and the student trie
imitate the teacher so as to produce the same output in a
unknown example by dynamically updating its weight ve
tor. The state in which the student achieves the same we
vector as that of the teacher and can therefore perform
same output as that of the teacher is referred to as pe
learning.

During the past few years a different type of learni
scenario has been introduced and is under discussion
mutual learningprocedure. In the mutual learning procedu
there is no distinction between the teacher role and the
dent role; both networks function the same way. They
ceive inputs, calculate the outputs, and update their we
vector according to the match between their mutual outp
@3,4#. This is an online learning procedure where in each s
one input vector is given, the output in both machines
calculated and the resulting increment of each weight ve
is added accordingly. It was found that perceptrons that
dergomutual learningmight end up in a synchronized sta
when the weight vectors of both machines are eit
parallel—exactly the same, or antiparallel—exactly the o
posite ~depending on their specific updating rule!. The sta-
tionary synchronized solution is equivalent to the station
perfect learning solution in the teacher-student scenario.
extend the analysis of mutual learning between percept
to mutual learning between parity machines. We introduc
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generic method of analyzing mutual learning in feedforwa
tree multilayer networks where we concentrate on the t
parity machine~TPM! @5–7#. The method is based on a ma
ping procedure that maps the mutual learning in TPMs o
mutual learning in noisy perceptrons.

A different cryptosystem composed of two parity m
chines that synchronize has recently attracted much atten
@8–11#. A host of simulation results show that discrete TPM
can synchronize very fast and a third machine that tries
learn their weight vector achieves only partial success. Th
properties make mutual learning in TPMs attractive for a
plications in secure communications, as an informatio
bearing message can be hidden within a complicated st
ture of the TPM’s weight vectors and still be reconstructed
the receiver using another TPM whose parameters are
actly matched to those of the first one. This type of cryp
system can provide a basis for security much different fr
currently used cryptosystems that involve large integers
are based upon number theory@12#.

The discrete machines studied carried out an upda
procedure different from the conventional learning proc
dures analyzed in neural networks. In the discrete mach
procedure the increment of the weight vector in each ste
finite and not infinitesimally small. Since the methods
analyzing discrete online learning in contemporary resea
see Refs.@13–17#, are not applicable to this case, we intr
duce here a method for analyzing mutual learning in n
works with discrete weight vectors and a learning proc
that is based on a finite increment. First, we describe mu
learning with discreteperceptrons, and then we exploit the
method of mapping mutual learning between TPMs onto m
tual learning between noisy perceptrons and analyze mu
learning in discrete TPMs.

In cryptography, one of the most important aspects of
channel is its security. Therefore, potential algorithms
eavesdroppers are included in our analysis. Such algorit
are actually sophisticated learning procedures where the
ties are the teachers and their weights are time depend
©2002 The American Physical Society35-1
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and the eavesdropper is the student. In the following
name this time-dependent-teacher-student scenariodynamic
learning.

In this paper, we analyze mutual learning and dynam
learning in TPMs of two kinds: machines with continuo
weight vectors@the spherical constraint, see Eq.~2! below#
and with discrete weight vectors and finite increment@see
Eq. ~3! below#. We introduce a method that maps mutu
learning in two layered parity machines onto mutual learn
in noisy perceptrons. The spherical tree parity machine
studied using the same tool box used for studying mu
learning in the perceptron@3#. The interesting behavior o
full synchronization for a certain regime in the learning ra
space and partial synchronization in the other regime is
found in the mutual learning of TPMs. Mutual learning in
TPM when the weight vectors are continuous is described
equations of motion that reveal the evolution of the ord
parameters in time. The derivation of the equations of mot
is based on the assumption that the order parameters
self-averaging quantities@18,19#. This assumption is violated
when the increment of the weight vectors in each step
finite and not infinitesimally small, as in the case of the d
crete weight vector studied here. Therefore we develop
ferent analytical tools for the case of discrete weight vecto

This paper is an extension of Ref.@10#. It contains a full,
detailed description of the analytical methods and disc
sions that were not included in Ref.@10#. An advanced attack
suggested recently by Shamiret al. @9#—the flipping
attack—is also analyzed. The paper is organized as follo
in Sec. II we introduce the TPM model. We employ a gene
framework to present its application to cryptography in S
II A. The dynamics studied are presented in Sec. II B and
order parameters and local-field distributions are discusse
Sec. II C. The mapping procedure is detailed in Sec. III. T
learning in continuous TPMs is given in Sec. IV, where w
divided the section into mutual learning~Sec. IV A!, and
dynamic learning~Sec. IV B!. The section is summarize
and the results are discussed in Sec. IV C. Discrete lear
is presented in Sec. V. We first describe mutual learning
perceptrons in Sec. V A. The extension to mutual learning
parity machines is given in Sec. V B. Two dynamic learni
attacks are studied, the naive attacker~in Sec. V C!, and the
flipping attacker~in Sec. V D!. A discussion and an overview
are given in Sec. V E. All analytical results are found to be
good agreement with simulation results as indicated in e
section.

II. THE MODEL

We consider a TPM withK binary hidden unitst i561,
i 51, . . . ,K feeding a binary output,s5) i 51

K t i , see Fig. 1.
The networks consist of either a continuous or a discr
coupling vectorwi5W1i , . . . ,WNi and disjointed sets of in
putsxi5X1i , . . . ,XNi containingN elements each. The inpu
elements are random variables with zero mean and unit v
ance. We confine the input components toxji 561 without
losing generality. The local field in thei th hidden unit is
defined as
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and the output in thei th hidden unit is derived by taking th
sign of the local field. The output of the tree parity machi
is therefore given by

s5)
i 51

K

sgn~hi !5)
i 51

K

t i .

Our analysis is limited to TPMs with three hidden units,K
53, merely for simplicity of the representation of the ana
sis. The extension of the formalism to any number of hidd
units is straightforward.

The weight vectors of the TPMs are initiated at rando
according to a certain constraint. We studied two differe
cases: the case when the weight vectors are confined
sphere,

(
j 51

N

Wji
2 5N, ~2!

and are initiated randomly according to a Gaussian distri
tion; and the case when there are a finite number of availa
integer values that each component of the weight vector
take,

Wji 56L,6~L21!, . . . ,61,0, ~3!

and the weight vector components are initiated at rand
from a flat distribution with equal probability for each valu
These two scenarios are referred to as the continuous
and the discrete case.

We studied the mutual and dynamic learning of su
TPMs in various scenarios where the initial random selec
weight vector is the unknown secret information. Two m
chinesA andB, perform mutual learning and try to synchro
nize by updating their weights according to the match
tween their output such that at the end they achieve
synchronization. The third machine,C, performs dynamic

FIG. 1. A tree parity machineN:3:1.
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learning by trying to learn the weight vectors of one of t
two machines, sayA, and uses an attack strategy to update
weight vectors such that at the end of the procedure they
be identical to the weight vector of playerA. The application
of these procedures to the field of cryptography is discus
in the following section.

A. Cryptography based on synchronization:
General framework

Before we develop the detailed equations for mut
learning in TPMs, we introduce the general concept of s
chronization and learning in discrete parity machines
terms of a mean-field-like approach, and discuss the qua
tive ability to construct an ephemeral key-exchange proto
based on mutual learning between TPMs.

First, let us consider two partiesA and B who wish to
agree on a secret key over a public channel. The we
vectors,wi

A/B , are the parameters of each unit which a
changed during the training procedure. Both parties s
with secret initial parametersw which may be generated ran
domly. After a number of training steps, the set of parame
is synchronized and becomes thetime-dependentcommon
key. At each training step a common random inputxi is gen-
erated for both of the parties; it is public and known to po
sible eavesdroppers.

Each party of the secure channel consists of three hid
units with corresponding three parameter vectors. Fo
given inputxi each party calculates an output bitsA/B and
sends it over the public channel. A training step is perform
only if the two output bits disagree and only for the hidd
units which agree with their output

DwA/B5g~sA/Bxi !u~2sAsB!u~sA/Bt i
A/B!, ~4!

where g is an odd function. As an example consider t
following configuration of the hidden units:111 for TPM
A and 211 for TPM B. The output bits have the value
sA51, sB521. HenceA trains all of its units according to
xi , while B changes only the weight vector of its first un
according to2xi .

Synchronization between the two machines indicate
full antiparallel state where each machine produces exa
the opposite output of the other for any given input. T
success of synchronization can be measured by the prob
ity of an incoherent state, i.e., the probability of having t
same output instead of the opposite one. The probability
an incoherent state, e in, that two corresponding hidden uni
are mistaken and instead of producing exactly the oppo
output they agree on a random input, is given by

e in5Prob„t i
A~xi ,wi

A!5t i
B~xi ,wi

B!…. ~5!

The functiong used for training must be chosen so that
the average~over random input! e in is decreased. In this
section we simplify the presentation by assuming symme
among the three hidden units,e i

in5e in. The full detailed de-
scription of the dynamical process beyond this mean-fie
like framework is given in Sec. V.
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It is now easy to see that as soon as the TPMs are
chronized they will remain synchronized, i.e., ifwi

A52wi
B

for all i, thensA52sB and will remain so. A training step
in a unit i is performed only if both output bits disagree an
if the two t i disagree accordingly. Hence, after the synch
nization state is achieved they either perform a coher
training step or they do not change their parameters~referred
to as a quiet step!. A pair of synchronized hidden units pe
forms a kind of random walk in parameter space but rema
synchronized.

This is different when the two hidden units are not ide
tical. Let us consider thefirst hidden unit, where there ar
four distinct cases.

~a! sA5sB: nothing moves and the next step is pe
formed.

~b! t1
A5sA, t1

B5sB, sA52sB: both parameter vector
w1

A andw1
B are coherently changed.

~c! t1
A5sA, t1

BÞsB, sA52sB or t1
AÞsA, t1

B5sB, sA

52sB: only one parameter vector is changed and mo
incoherently, hencee1

in increases.
~d! t1

AÞsA, t1
BÞsB, sA52sB: both parameter vector

are not changed.
The probability of finding these four cases can be cal

lated from the knowledge ofe in. For example, the probabil
ity of finding the configuration shown above,111 and
211, is 1

8 (12e in)(e in)2. All 64 configurations can be di-
vided into three categories: the probability of having an
tractive step,pa @case~b!#; the probability of having a repul-
sive step,pr @case~c!#; or the probability of having a quie
step,pq @cases~a! and ~d!#. These probabilities are found t
be

pa5
1

2
@~12e in!31~12e in!~e in!2#,

pr52~12e in!~e in!2, pq512pa2pr . ~6!

In the remainder of this section the three probabilit
above are employed in order to explain the synchroniza
phenomenon, and to demonstrate the superiority of the s
chronization process over a possible attacker that also trie
synchronize withA andB.

Close to synchronization,e in;0, the probability of hav-
ing a repulsive step is proportional topr;(e in)2 whereas the
probability of having an attractive step ispa; 1

2 ~quiet steps
are always possible!. Let us assume that the change of t
error, e in depends only on a function ofe in itself. Later we
will derive the exact equations, which are more compl
Then, the average change ine in in one step is obtained by

De5a~e in!pa2r ~e in!pr . ~7!

Close to synchronization a repulsive step affects all of
parameters while an attractive step can only synchronize
few parameters which are not yet identical. Hence we exp
for small values ofe in,

a~e in!;a0e in, r ~e in!;r 0 . ~8!
5-3
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Therefore, in the leading order one obtainsDe}a0e in. Close
to synchronization the attractive force is dominant, indep
dent of the detailed mechanism of learning. The parity m
chine suppresses the repulsive steps by reducing their
pearance frequency.

This relation does not hold for the committee mach
which maps the hidden units to their majority vote,s
5sgn(t11t21t3) @20,21#. For this case one finds

pa5
3

4
~12e in!31~12e in!2~e in!1

1

2
~12e in!~e in!2,

pr5
1

2
~12e in!2~e in!1~12e in!~e in!2. ~9!

Now, close to synchronizationpr;e in and repulsion and at
tractive forces are of the same order, Eq.~7!. This competi-
tion between attraction and repulsion supports possible
tackers, as discussed below.

Let us go back to the parity output and consider an
tackerC who knows all the details of the algorithm and c
listen to the communication betweenA andB. We know that
the initial configurations of the parameters ofA and B are
unknown. The attackerC has the same architecture~TPM!,
the same number of hidden units (3) and uses the s
learning algorithm, Eq.~4!. What is a good algorithm forC
to synchronize, i.e., to learnA and to be antiparallel toB? If
C is synchronized then she should remain so. Hence
should use the identical training step in case of agreem
with A. Let us consider an attackerC who simulates partyA
after synchronization betweenA and B is achieved.C uses
the complete algorithm explained above for partyA. This
means thatA always makes some moves of her parame
while C moves her parameters corresponding to the u
whose outputs bitt i

C are identical tosA ~in the following we
named this attackthe naive attack, see Sec. V C!. This strat-
egy for C generates many repulsion steps betweenC andA.
In fact, assuming the error between all matching units is
same,e in5Prob (t i

CÞt i
A) @where we use the same symb

for e in as in Eq.~5!, although seemingly different, in bot
cases it refers to the error, see Sec. II C and Eq.~17! below#
and summing up all possibilities yields

pa5
1

2
~12e in!31

1

2
~12e in!~e in!21~12e in!2e in,

pr5~12e in!2e in12~12e in!~e in!21~e in!3. ~10!

The essential difference between partyA and attackerC is
that the probability of finding a repulsive step scales w
(e in)2 in the mutual learning betweenA and B and scales
with e in in the dynamic learning betweenC andA, close to
synchronization.A andB react to their mutual output whileC
cannot influenceA; this yields a different behavior for sma
values of the errore in.

The full scheme of the ratio,pr /pa , derived from Eqs.~6!
and~10! as a function ofe in is presented in Fig. 2. It is clea
that at any value ofe in the performance of the mutual learn
06613
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ing is better than the performance of the naive attacker
performs many more repulsive moves compared to hers
tractive moves. Therefore, a more sophisticated attacker
recently suggested in Ref.@9#, the flipping attacker. Her per
formance cannot be measured in the scope of this gen
framework since her strategy depends on the local field
the hidden units and therefore cannot be included under
rubric of Eq.~4!, whereg depends only onsxi .

In the following, before delving into details we introduc
the dynamics@Eq. ~4!# more specifically. We discuss some
the relevant order parameters and their distributions.
present the strategy of the flipping attacker and an intuit
explanation for her success.

B. The dynamics

In principle, one can consider the following classes
dynamics that lead to a synchronized state.

~a! The parties update their weight vectors whenever th
outputs mismatch@sAÞsB, as appears in Eq.~4!#, and each
unit updates according to the input multiplied by the oppos
of its output.

~b! The parties update their weight vectors whenever th
outputs mismatch@sAÞsB, as appears in Eq.~4!#, and each
unit updates according to the input multiplied by its outpu

~c! The parties update their weight vectors whenever th
outputs match (sA5sB), and each unit updates according
the input multiplied by the opposite of its output.

~d! The parties update their weight vectors whenever th
outputs match (sA5sB), and each unit updates according
the input multiplied by its output.

In all the dynamics mentioned above, thei th hidden unit
is updated only if it matches the overall output in that par
if t i5s. The two parties that try to synchronize might en
up in an antiparallel state@cases~a! and~b!#, or in a parallel
state@cases~c! and ~d!#. Although Eq.~4! does not describe
cases~c! and~d!, the discussion in Sec. II A is relevant to a
cases.

In this paper, we introduce a detailed presentation of c
~a!. In each step an update is made only if both machinesA

FIG. 2. The ratio betweenpr andpa as a function ofe in in the
case of mutual learning in TPMs, Eq.~6! ~solid line!, and in the
case of the naive attack, Eq.~10! ~dashed line!.
5-4
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andB, disagree,sAÞsB , and each unit updates according
the input multiplied by the opposite of its output. In th
spherical case we normalize the weight vector after each
dating such that its norm does not change. The depend
of the weight vector in a new step on the weight vector in
former one in the continuous case is

wi
A15

wi
A1

h

N
xiu~2sAsB!u~sAt i

B!sB

Iwi
A1

h

N
xiu~2sAsB!u~sAt i

B!sBI ,

wi
B15

wi
B1

h

N
xiu~2sAsB!u~sBt i

B!sA

Iwi
B1

h

N
xiu~2sAsB!u~sBt i

B!sAI , ~11!

where u(y) is the Heaviside function, i.e., equals zero f
y,0 and 1 otherwise,h is the learning rate, andi
51, . . . ,K. The analysis of the dynamics is in the therm
dynamic limit whereN→` and the weight vectors are up
dated by an infinitely small quantity in each step.

In the discrete scenario, the update is made in a sim
manner, yet there are two important differences from
dynamics point of view. One is that in each step the vect
components are changed to the next integer value and no
an infinitesimally small one as in the continuous case@Eq.
~11!#. The second difference is that when there is an upd
the components which have reached the boundary valueWi

56L , and their absolute value should be increasedWi
15

6(L11), are not changed, and remain with the bound
value. Mathematically, the learning is phrased as follows

wi
A15wi

A1D~wi
A
•xis

B!xis
Au~sAt i

A!u~2sAsB!,

wi
B15wi

B1D~wi
B
•xis

A!xis
Au~sBt i

B!u~2sAsB!,
~12!

whereD(y)512dL,y andd is the Kronecker delta function

C. Order parameters and joint probability distributions

The analysis of learning in neural networks with an in
nite number of weight vector components is based upon
tistical mechanics analysis of several order parameters.
standard order parameters used are

Qi
m5

1

N/3
wi

m
•wi

m ,

Ri
m,n5

1

N/3
wi

m
•wi

n , ~13!

where the index i represents thei th hidden unit, i
51, . . . ,K and m,n denote the specific party,m,n
06613
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P$A,B,C%. The angle between each pair of weight vectorsu,
is given by the normalized overlap between the weight v
tors,

r i
m,n5cosu i

m,n5
wi

m
•wi

n

iwi
miiwi

ni
. ~14!

We know that there are no direct correlations between dif
ent hidden units due to the tree architecture and therefore
overlaps between different units is zero.

In the framework of statistical mechanics analysis of o
line learning the order parameters play an important role
taking the averages over the random inputs, or equivale
over the local-field distribution. According to the centr
limit theorem, the joint probability distribution of the loca
fields in each triplet of matching hidden units taken from t
three different machines depends only on the set of or
parameters,P(hA,hB,hCu$R,Q%) ~where we omitted the sub
script i from all parameters! and can be found from the cor
relation matrix. When all weight vectors are normalize
Qm51, it is found to be

P5

expS 2
F

2ED
~2p!3/2AE

, ~15!

where F5(hC)2GC1(hA)2GA1(hB)2GB22hAhBDC

22hAhCDB22hChBDA, E512(rA,B)22(rA,C)22(rB,C)2

12rA,BrA,CrB,C, Gk5(12r l ,m)2, Dk5r l ,m2rk,mrk,l and
k,l ,mP$A,B,C%. This complicated expression can be mu
simplified if we assume that the two machines,A andB, are
already antiparallel. In that case the joint probability dist
bution of the local fields is given by

P5
e2(1/2)[(hC)21(hA)222hAhCrA,C]/[1 2(rA,C)2]

2pA12rA,C
d~hA1hB!,

~16!

whered() stand for the Dirac delta function.
At this stage it is possible to calculate the probabiliti

defined in Sec. II A and to show that indeede in has the same
meaning and the same dependency onr in the two cases: Eq
~5! and later when the attacker is introduced. Averaging o
the local-field distributions results in the case of mutu
learning in e in512(1/p)cos21rA,B and in the case of dy-
namic learning we finde in5(1/p)cos21rA,C. In order to
compare these two errors, where in the first one learnin
described by negativer and in the second by positive, w
define r̄5urA,Bu5urA,Cu. Substitutingr̄ into both functions
above, we get

e in5
1

p
cos21r̄. ~17!

We present in this paper a flipping attacker, which mak
use of the absolute value of the local field. The attac
estimates that the unit with the smallest absolute local fiel
5-5



u
ily
he

d

lu
re
f
ls
h
Se

ge
d
-

o
o

u
p

g
pe
in
ua
fie
nd
a
ll
m

ng
m
o

iv
a
ilit
o
e

it

its

its.
ere
in
t as
a-

en
two

n as
d.
ro-
ous

ent

mu-
be
ons.
ble
the

rder
s.
in-
the

en

the
m
-
tion

ROSEN-ZVI, KLEIN, KANTER, AND KINZEL PHYSICAL REVIEW E 66, 066135 ~2002!
the one that is most probably wrong—that has different o
puts, t i

CÞt i
A . The origin of this assumption can be eas

explained by averaging over the local field distribution. T
average of the absolute value of the local-field,^uhCu&, given
an overlaprA,C between two matching hidden units an
norm QC of the weight vector in this unit is found to be

^uhCu&5
1

2
AQC

2p
~16rA,C!, ~18!

where the sign in the right-hand side of the equation is p
for agreement between the outputs and minus for disag
ment. Sincer varies between21 and 1 and in a state o
partial learning 0,r,1, a small absolute local field signa
a mistake in the unit’s output. The flipping attacker uses t
knowledge in her learning procedure, as discussed in
V D.

The analytical study of this attacker includes avera
over probability distribution of the local field in the thir
party, the attackerC, given the local fields of the two ma
chines. This probability is given by

P~hCuhB,hA,$r,Q%!5
P~hC,hB,hCu$r,Q%!

P~hA,hBu$r,Q%!
, ~19!

where P(hC,hB,hCu$r,Q%) and P(hC,hBu$r,Q%) are the
joint probability distributions of the three local fields and tw
local fields, respectively, and they are derived from the c
relation matrix similar to Eq.~15!.

III. MAPPING PROCEDURE

One can map mutual learning in the parity case onto m
tual learning inK perceptrons. The mapping to noisy perce
tron introduced for analyzing online learning in TPM@22# is
inadequate in the case ofmutuallearning where the updatin
depends on the matching between the outputs but is inde
dent of their specific sign. Nevertheless, a different mapp
from TPM to noisy perceptrons can be used for the mut
learning case. The mapping presentation is much simpli
in the continuous case since assuming random initial co
tions to all hidden units results in the same overlap for
hidden units,r i5r; i . Therefore, we first assume that a
the overlaps between matching hidden units are the sa
Hence, updatingK perceptrons is equivalent to one updati
in the TPM. The presentation of the mapping below is si
plified by the restriction ofK53 and the generalization t
any K is straightforward.

We have TPMs that consist of nonoverlapping recept
fields with random inputs. Hence in each of the TPMs
eight internal representations appear with equal probab
A specific hidden unit is updated when the following tw
conditions are fulfilled;~a! there is a mismatch between th
results of the two TPMs, and~b! the state of the hidden un
is the same as the output of the TPM. We make use ofe, the
probability of having different results in the two hidden un
such that the overlap between them isr, given by
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e5
1

p
cos21r. ~20!

We concentrate on a specific pair of matched hidden un
Given that the outputs of the hidden units are different, th
is a probabilityP1 that the TPMs results are different and
onehalf of the cases the TPM output has the same outpu
its hidden unit and therefore both hidden units in both m
chines are updated. This probability is given by

P15P~sAÞsBut i
AÞt i

B!5e21~12e!2. ~21!

Similarly, the probability that there is a mismatch betwe
the two TPMs, given that there is agreement between
hidden units, is given by

P25P~sAÞsBut i
A5t i

B!52e~12e!. ~22!

In this case only one of the hidden units has the same sig
the output in its TPM and only that hidden unit is update

These probabilities are introduced into the updating p
cedure of the hidden units, the perceptrons. In the continu
case they affect the form of the equations of motion@see Eq.
~23!#. In the discrete case they are introduced in a differ
manner, as described in Sec. V.

IV. CONTINUOUS TREE PARITY MACHINES

Counting on the mapping procedure described above,
tual and dynamic learning in continuous TPMs can
mapped onto learning scenarios in continuous perceptr
The updating rule can be redefined so that it will be suita
for a perceptron where the kind of updating depends on
above probabilities,P1 andP2, Eqs.~21! and~22!. The stan-
dard online equations consist of an average over the o
parameters@2#, and now contain additional random variable
The average over these additional variables is taken by
troducing auxiliary random parameters, as described in
following section.

A. Antiparallel learning

In this scenario the updating rules of the TPMs are giv
in Eqs.~11! where we have three hidden units,K53. Map-
ping the rules onto a perceptron learning by employing
probabilities above is done by introducing auxiliary rando
parameters,pa , pb , pg , which are equally distributed be
tween 0 and 1. The updating rule is calculated as a func
of these parameters in the following manner:

wA15

wA1
h

N
xtBDA

UwA1
h

N
xtBDAU , wB15

wB1
h

N
xtADB

UwB1
h

N
xtADBU ,

~23!

where
5-6
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DA5u~2tAtB!uS P1

2
2paD2u~tAtB!u~P22pb!

3uS 1

2
2pgD ,

DB5u~2tAtB!uS P1

2
2paD2u~tAtB!u~P22pb!

3uS pg2
1

2D .

The introduction of the auxiliary random variables is do
according to the following logic: in one half of the cases
disagreement between the units and disagreement bet
the TPMs, no update occurs in the units~since their sign does
not match the TPM’s sign! and henceP1 is divided by 2 in
the equation above. The second scenario where updating
curs is when the units have the same sign, the TPMs disa
and therefore one of the units is updated and the other is
The auxiliary random numberpg is the one that determine
~randomly! which unit of the two is updated.

In order to calculate the equations of motion, one has
multiply the updated vectors, Eq.~23!, first, and then to per-
form the two averages; average over the joint probabi
distributions of the local fields and over the random para
eters,pa , pb , andpg . The result of these two averages is
equation over the normalized overlapr, that depends only
on r or equivalently on the angleu @see Eq.~14!#,

dr

da
5hF u2

p2
1S 12

u

p D 2GF 1

A2p
~12r!2

hu

2pG ~11r!

2
2h

A2p
~12r2!

u

p S 12
u

p D2h2r
u

p S 12
u

p D 2

,

~24!

wherea is the number of examples per input dimension. T
points r561 are fixed points of the equation of motio
above. Both are repulsive when the learning rateh is small.
As soon ash.hc;2.68 a phase transition occurs, ther5
21 fixed point becomes an attractive one and a new ph
arises, where the two machines are fully synchronized.
asymptotic decay ofr to synchronization scales expone
tially with a, as can be found by expanding the terms in E
~24! around u5p. Apart from the fixed points discusse
above, for anyh smaller thanhc there is a different attrac
tive fixed point, as can be found by solving numerically E
~24!. The fixed pointu f(r f) is the exact angle~overlap! in a
specific learning rate,h, in which the right-hand side of Eq
~24! becomes zero,

h5

A2p

u f
sin2u f S 12

2u f

p D 2

~11cosu f !F u f
2

p2
1S 12

u f

p D 2G12 cosu f S 12
u f

p D 2
.

~25!
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In Fig. 3 we plotted the fixed points as a function ofh, as
was found numerically from Eq.~25!. Simulation results for
spherical TPMs withN55000 and averaged over 20 sampl
are in agreement with the analysis as indicated by the
tested cases presented by the symbols. Clearly, the sy
undergoes a phase transition from a partial to a perfect a
parallel state athc;2.68. One instance for each of th
phases is given in the inset of Fig. 3. The development of
averaged̂ r&, averaged over the three hidden units and
samples, in the case of partial mutual learning,h52 ~tri-
angles!, and the case of antiparallel synchronization,h53
~circles!, as a function ofa is presented in the inset of Fig. 3
Numerical calculations of the analytical equation, Eq.~24!,
are presented by the solid lines.

B. Dynamic learning

In the last section we show a procedure that leads to
synchronization. In the following we check the ability of
third TPM, an attacker, to learn the weight vectors of the t
parties. The third machine,C, that tries to imitateA, updates
its weight vector only when the two parties are updated a
only the hidden units that match the output of partyA. Math-
ematically, this is defined as follows:

wi
C15

wi
C1

h

N
xiu~2sAsB!u~sAt i

C!sB

Iwi
C1

h

N
xiu~2sAsB!u~sAt i

C!sBI . ~26!

Continuing the same line of introducing probabilities in t
mutual learning procedure, one can write a set of upda
rules for the dynamic and mutual learning in perceptro
which is equivalent to TPMs learning. This is given by

FIG. 3. The fixed pointr f as a function ofh for the continuous
TPM as obtained from the solution of Eq.~25! ~solid line!. Simu-
lation results in some instances ofh are presented by stars. Inse
analytical ~solid lines! and simulation results in the case ofh52
~triangles! andh53 ~circles! for ^r& as a function ofa. All simu-
lations are carried out withN55000 and averaged over 20 sample
5-7
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wA15

wA1
h

N
xtBD̃A

IwA1
h

N
xtBD̃AI ,

wB15

wB1
h

N
xtAD̃B

IwB1
h

N
xtAD̃BI ,

wC15

wC1
h

N
xtBDC

IwC1
h

N
xtBDCI , ~27!

where

D̃A5u~2tAtB!u~P12pa!uS 1

2
2pdD

1u~tAtB!u~P22pb!uS 1

2
2pgD ,

D̃B5u~2tAtB!u~P12pa!uS 1

2
2pdD

1u~tAtB!u~P22pb!uS pg2
1

2D ,

DC5u~2tAtB!u~tAtC!u~P12pa!uS 1

2
2pdD

1u~tAtB!u~tAtC!u~P22pb!uS 1

2
2pgD

2u~2tAtB!u~2tAtC!u~P12pa!uS pd2
1

2D
1u~tAtB!u~2tAtC!u~P22pb!uS pg2

1

2D .

We introduce another random parameter,pd , which is redun-
dant when one calculates only the mutual learning, Eq.~23!,
and it is necessary for deriving equations of motion for
order parameters in the case of dynamic learning. The
terms in DC represent the four possibilities that cause
updating in the attacker hidden unit. For instance, the fi
term of DC represents the case where the hidden unit in
attacker and in the first TPM have the same state, the TP
outputs are different~indicated byP1) and the outputs in the
hidden units ofA and B are the same as their TPMs~the
probability for such an event is12 ).

The equation of motion after synchronization, i.e., wh
rA,B521, rA,C52rB,C , is derived by averaging Eqs.~27!
06613
e
ur
n
t
e
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over the joint probability distributions that is given in Eq
~16!. It depends on the learning rate and the overlaprA,C and
is given explicitly by

drA,C

da
5

h2

2 S 12
1

p
cos21rA,C2rA,CD . ~28!

This equation describes the development of the overlap
tween the attacker and one of the two machines that
synchronized in both cases, when each machine learns
opposite of its result, Eq.~26!.

As can be derived from Eq.~28!, independent of the
learning rate,h, there is a unique fixed pointr f;0.79. The
point r51 is not a fixed point at all. Note that this fixe
point describes only the failure of the continuous attack
the equivalentdiscreteattacker might synchronize and ga
r51, as discussed in Sec. V C. In Fig. 4 we present ana
cal ~solid lines! and simulation results~symbols! for the
overlap between that attacker and playerA, rAC . We carried
out simulations withN55000, and each result averaged
times. A good agreement between simulation results and
lytical results is presented in Fig. 4 in both cases; when
overlap is initialized zero,rAC50 and in the inset, when the
initial value of the overlap is almost 1,rAC50.98. All re-
sults are for full synchronization betweenA and B, rAB
521.

C. Summary

In summary, we showed that an initiated pair of rando
TPMs performs mutual learning results in a full synchro
zation state forh.hc . We introduce here a specific dynam
ics where the parties update only in a mismatch between
outputs, the updating is in opposite directions of each ot
and they are normalized in each step@case~a! in Sec. II B#.
Analyzing case~b!, for instance, reveals that for allh, the
stationary solution is a synchronized state. Using the dyn

FIG. 4. The analytical curve of the averaged overlap^r& in a
dynamic learning of TPMs as obtained from Eqs.~28! ~solid line!,
with h510. The initial state isr50. Inset: analytical results for the
dynamic learning with the initial stater50.98. Symbols represen
the corresponding simulations, carried out withN55000 and aver-
aged over 20 runs.
5-8
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ics appearing in Sec. II B but without normalizing the weig
vectors does not end in a synchronization state at all.
specific algorithm we chose contains the reach phenome
of phase transition@23#. Moreover, its synchronization abili
ties are closely related to the discrete synchronization stu
in the following section.

The attacker tries to learn the parties’ weight vectors
manages to achieve only partial success. This difficulty
learning that such a naive attacker faces as indicated by
fixed point that differs from 1, also characterizes the na
attacker in the other cases presented in Sec. II B. Howe
the analysis is not relevant for the discrete case studied
low. In the discrete case the naive attacker performanc
restricted too but perfect learning is possible, see Sec. V
The flipping attacker that makes use of the local fields~see
Sec. V D! has a better performance in the discrete case.
open question which deserves further research, is how
analyze the continuous flipping attacker.

V. DISCRETE MACHINES

The study of discrete networks requires different meth
of analysis than those used for the continuous case. We fo
that instead of examining the evolution ofR andQ, we must
examine (2L11)3(2L11) parameters, which describe th
mutual learning process. By writing a Markovian proce
that describes the development of these parameters,
gains an insight into the learning procedure. Thus we de
a (2L11)3(2L11) matrix, Fm, in which the state of the
machines in the time stepm is represented. The elements
F are f qr , whereq,r 52L, . . . 21,0,1, . . .L. The element
f qr represents the fraction of components in a weight vec
in which theA’s components are equal toq and the matching
components ind unit B are equal tor. Hence, the overlap
between the two units as well as their norms are defi
through this matrix,

R5 (
q,r 52L

L

qr f qr ,

QA5 (
q52L

L

q2f qr , QB5 (
r 52L

L

r 2f qr . ~29!

The matrix elements are updated, if and only if, an update
the weight vectors occurs.

A. Learning with discrete perceptrons

The mutual learning scenario is much simplified in t
case of the perceptron, therefore, we present here the
description of the analytical procedure used for this ca
Updating is done in the case of a mismatch, and the aim i
arrive at a state in which the weight vectors are antipara
r521 ~we could aim atr51 instead, see the manifold o
possible dynamics in Sec. II A, and the results would
equivalent!. The dependence of the weight vector in a n
step on the weight vector in the former one is given by
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wi
A15wi

A1D~wi
A
•xis

B!xis
Bu~2sAsB!,

wi
B15wi

B1D~wi
B
•xis

A!xis
Au~2sAsB!, ~30!

where sA/B represents the output of TPMA/B, and wA/B

represents its weight vector.
The update of the elements of the matrixF, is calculated

directly from Eq. ~30!, where one must average over th
input componentsXi j . In the discrete case, since the incr
ment is finite@see for instance Eq.~12!#, the regular order
parameters—the vectors’ overlaps—no longer suffice for
macroscopical description of the dynamics even in the th
modynamic limit,N→`. However, the distributions of the
local fields do hold. The dynamics cannot be analyzed w
the standard equations of motion based on differential eq
tions of the order parameters with respect toa, the number
of examples per input dimension. On the average, half of
updated weights in one machine are increased by 1, while
matching weights in the other machine are decreased b
and vice versa.

The possibility for agreement or disagreement betwe
the parties is a function of the current overlap between th
calculated using the matrices@see Eq.~29!#. This probability
is implemented by choosing a random parameter,pa be-
tween@0,1#. If it is smaller thane, as defined in Eq.~20!, the
parties disagree, otherwise they agree. The updating of
trix elements is described as follows: for the elements witq
and r which are not on the boundary, (qÞ6L and rÞ6L)
the update can be written in a simple manner,

f q,r
1 5u~pa2e! f q,r1u~e2pa!S 1

2
f q11,r 211

1

2
f q21,r 11D .

~31!

For elements with both indices on the boundary, the upda

f L,L
1 5u~pa2e! f L,L ,

f 2L,2L
1 5u~pa2e! f 2L,2L ,

f L,2L
1 5u~pa2e!S 1

2
f L,2LD1u~«2pa!

3S 1

2
f L21,2L111

1

2
f L21,2L1

1

2
f L,2L11D ,

f 2L,L
1 5u~pa2e! f 2L,L1u~e2pa!

3S 1

2
f 2L11,L211

1

2
f 2L11,L1

1

2
f 2L,L21D .

~32!

For elements with just one of the indices on the bound
(q56L and rÞ6L or vice versa!, the update is
5-9
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f q,L
1 5u~pa2e! f q,L1u~e2pa!S 1

2
f q11,L211

1

2
f q11,LD ,

f q,2L
1 5u~pa2e! f q,2L1u~e2pa!

3S 1

2
f q21,2L111

1

2
f q21,2LD ,

f L,r
1 5u~pa2e! f L,r1u~e2pa!S 1

2
f L21,r 111

1

2
f L,r 11D ,

f 2L,r
1 5u~pa2e! f 2L,r1u~e2pa!

3S 1

2
f 2L11,r 211

1

2
f 2L,r 21D . ~33!

The main quantity of interest is the number of steps
quired in order to arrive at a state of full synchronization.
simulations there is a discrete transition from an over
which is almost antiparallel to a completely antiparallel sta
This is due to the finite nature of the vectors, the larg
value of overlap before synchronization is211O(1/N). In
simulations withN5104, for example, the largest value o
the overlap before full synchronization isr50.999 99, and
this is the value we used in our analytical procedure,
defining full synchronization for comparison to simulatio
with N5104.

Our results indicate that the order parameters are not
averaged quantities@19#. Several runs with the sameN result
in different curves for the order parameters as a function
the number of steps, see Fig. 5. This explains the nonz
variance ofr as a result of the fluctuations in the local fiel
induced by the input even in the thermodynamic limit.

In the inset of Fig. 5 we present the averaged numer
results derived from the analytical equations~31!, ~32!, and
~33! of synchronization in the perceptron~solid line! with
L51, Wi561,0. The analytical results are averaged o

FIG. 5. The averaged overlap^r& and its standard deviation as
function of the number of steps as found from the analytical res
~solid line! and simulation results~circles! of mutual learning in
TPMs. Inset: analytical results~solid line! and simulation results
~circles! for the perceptron, withL51 andN5104.
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500 samples and the nonzero standard deviations are
presented in order to simplify the presentation. Simulat
results withL51 (Wi561,0) andN5104, averaged over
500 samples are presented by the circles; error bars are
dard deviations. Note that even though the matrix eleme
were initiated with the same values in each run, there is
a nonzero standard deviation due to fluctuations in the lo
fields as a function of the particular set of random inp
even in the thermodynamic limit.

For the perceptron, synchronization is much easier
faster to achieve than for the TPM. Take for example
case whereL51. If for three consecutive steps, both th
other party’s output andxi were positive, an attacker ca
surely know thatWi51, while this is not so in the TPM
case, as the attacker cannot know for sure whether the
was updated or not. Therefore, the TPM is much more s
able for building a cryptosystem than the perceptron.

B. Synchronization in TPMs

Mutual learning in discrete TPMs is described by mutu
learning discrete noisy perceptrons. As the TPM consists
three hidden units~each evolving differently!, we now have
three different angles,u i where i 51,2,3, for each hidden
unit. Since the dynamics are not self-averaged, we use p
abilities similar to those introduced in Eq.~21!. The defini-
tions of these probabilities are extended to include all th
hidden units, and each one is characterized by its own an
P1

i , P2
i . The probability ofP1(sAÞsBut i

AÞt i
B) is given by

P1
i 5e jek1~12e j !~12ek!. ~34!

Similarly, the probability that there is a mismatch betwe
the two TPMs, given that there is agreement between thei th
pair of hidden units, for instance, is given by

P2
i 5e j~12ek!1ek~12e j !. ~35!

Here, as well as in the continuous case, we chose a sequ
of random parameters to represent the particular choice
random inputs.

We follow each hidden unit separately and therefore
have three matrices,Fi . We initialize the weights randomly
therefore the matrices in the initial state have the values
1/(2L11)2 in each entry. In each step, two sets of rando
parameters are chosen and are used to set a specific re
tion of the internal presentation for the parties. The first se
used to define agreement or disagreement between each
of hidden units, as done in the perceptron case in Sec. V

All in all, due to inversion symmetry, whenK53 there
are four possible results for the internal presentatio
111, 122, 212, or 221 and accordingly 434
possible states, for which the parties’ output does not ma
and an update is performed. We then use the second s
random parameters for defining the specific internal pres
tation in one of the TPMs, and therefore immediately in t
other, according to their agreement or disagreement.

The case when the three hidden units disagree is exem
fied below. There is a possibility that all hidden units a
updated@case~b! in Sec. II A#, or only one of them@case~b!

ts
5-10
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describes two of the hidden units and case~d! describes the
third#. In two of the eight such internal presentations all t
three hidden units are updated whereas in the other six,
one of them is updated, so that we must choose which
All of these possibilities are equally probable, independen
u i . Therefore, we take all the possible internal scenarios
account and, for instance, when after using the auxiliary r
dom numbers, all three hidden units disagree, we choos
randompa and accordingly update,

f q,r
i 1 5uS 1

4
2paD S 1

2
f q11,r 21

i 1
1

2
f q21,r 11

i D
1uS i 11

4
2paD uS pa2

i

4D S 1

2
f q11,r 21

i 1
1

2
f q21,r 11

i D .

~36!

The first term corresponds to the case where all three hid
units are updated~with probability 1

4 ). The second term cor
responds to the case where only one hidden unit is upda
Equation~36! is valid only for q andr which are not on the
boundary.

In the case of the perceptron when an update occurs,
sides perform the update, in opposite directions. In the c
of the TPMs, two matching units do not always perform
update together; in many cases one of the parties upd
unit i, while the other updates unitj, iÞ j , as described in
case~c! in Sec. II A. In such a case, Eq.~36! is not sufficient,
and we should add a description of the matrices’ upd
when only one party is updated. Let us say the party rep
sented by the matrix rows is updated. Then we have

f q,r
i 1 5 1

2 f q11,r
i 1 1

2 f q21,r
i , ~37!

and if the party represented by the matrix columns is
dated, we have

f q,r
i 1 5 1

2 f q,r 11
i 1 1

2 f q,r 21
i , ~38!

FIG. 6. The synchronization time~dashed line! and the dynamic
learning time ~solid line! distribution, of analytical results for
TPMs, with L51. Symbols stand for the simulations results, w
N510 000.
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where we limit the description only toq,r which are not on
the boundary. An example is the case when the internal
sentation of partyA is 211 and that ofB is 221. Then
party A updates unit 1, Eq.~37! with i 51, while partyB
updates unit 3, Eq.~38! with i 53.

In Fig. 6 we present the distribution of time steps f
synchronization according to simulations withN510 000,
(*), and according to the analytical results~solid line! in the
case ofL51, taken from 500 different runs. The evolutio
of the average overlap in this case is given in Fig. 5. A so
line represents the analytical results and circles stand
simulation results. Both standard deviations are indicated
the error bars. There is good agreement between the ana
cal and simulation results.

An attacker does not have to achieve full synchronizat
in order to decipher the secret code. For finiteN, even a state
close enough to synchronization is sufficient to break
code, thus making the system insecure. Moreover, the an
sis and the simulations are faster when the aim is to arriv
a partial overlap state. We therefore considered an atta
who achieveŝ r&50.9, a successful attacker, and synch
nization and learning times given in Fig. 7 and in Table I a
for achieving^r&50.9.

C. The naive attacker

The aim of an attacker is to synchronize with one of t
parties and reveal the secret key~the weights of the parties!,

TABLE I. Average synchronization and dynamic learning time
for the naive attacker and the flipping attacker, for different valu
of L.

tsynch tnaive t f l ipp

L51 25614 36618 32619
L52 79638 2396145 108658
L53 166667 332063039 2216106
L54 2986113 176 8106179 446 3806159

FIG. 7. The synchronization time and learning time distributi
for the flipping attacker, obtained by simulations withN5103 @dia-
monds~stars! for synchronization~learning!# and analytical calcu-
lations @squares~circles! for synchronization~learning!# with L
53, averaged over 104 runs.
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hence her natural strategy is to imitate one of them, partA
for instance, by using the same learning rule. The attac
eavesdropping on the public channel connecting the par
knows the input vectorxi and the outputOA/B. When OA

ÞOB, the parties update their weights, and so does the
tacker. In the case where the attacker’s internal presenta
is the same asA’s, they update the same units, an attract
step occurs, and the attacker gets closer to her goal. Yet w
the internal presentations of the attacker and the party di
she updates some wrong units, a repulsive step occurs,
this delays her. The 2K21-fold degeneracy in the output is th
main reason for the attacker’s failure. The dependence of
attacker’s weight vector in a new step on the weight vecto
the former one is given by

wi
C15wi

C1D~wi
C
•xis

B!xis
Bu~2sAsB!. ~39!

The analysis is similar to the synchronization process, gi
by Eq. ~36!. We now create nine matrices, each represen
the state of two matching hidden units among two part
and the attacker and each party. We must set the par
internal presentation, as well as the attacker’s. We de
which one of the 83838 internal presentations occurs
each step, following the correlation between the parties
the attacker, and update the matrices accordingly, as
scribed in Sec. V B.

Although the attacker may synchronize before the part
the average learning time is around twice the synchron
tion time for L51, and is around 200 times the synchron
zation time forL53. It seems that the reason for the nai
attacker’s weakness is that too many repulsive steps oc
therefore, when trying to improve her abilities, we need
increase the probability for an attractive step, and decre
the probability for a repulsive one. It has been shown@24#
that a small absolute local-field value indicates a high pr
ability for an error. In the following section we present a
advanced attacker which makes use of this knowledge.

D. The flipping attacker

The flipping attacker’s strategy, recently introduced
Ref. @9#, adds a different move to the strategy of the na
attacker when disagreement occurs between the outpu
the attacker and partyA. In this case, the attacker is certa
that either one or three of her hidden units are in disag
ment withA’s units, and therefore a repulsive step will occ
Since disagreement of three units is less likely than disag
ment of one-unit, the attacker’s strategy treats all cases
one unit disagreement. The flipping attacker tries to prev
the repulsive step by using a ‘‘flipping’’ approach; she n
gates the sign of one of her units, before performing
update. If the correct unit was chosen, then the internal
sentation matches that of the party, and the same units wi
updated by both, thus performing an attractive step. To r
her chances of flipping the right unit, the attacker chooses
one whose absolute local-field value is the lowest of
three :t̂ i52t i for i that minimizesuhi u.

The learning rules are the same as those given by Eq.~12!
for the mutual synchronization, but the attacker’s learning
different,
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wi
C15wi

C1D~wi
C
•xis

B!xis
Bu~2sAsB!

3@u~sCsA!u~sCt i
C!1u~2sCsA!u~sAt̂ i

C!#,

~40!

wheret̂ i52t i if uhi u,uhj u, ; j Þ i and t̂ i5t i otherwise.
The analysis used here is the same as for the naive

tacker. Here too, we follow the development of nine matric
which are updated at every time step, as described in
V B. However, in cases where the attacker’s output disagr
with the A’s output, we compute the probability for eve
unit to be the one with the lowest absolute local-field valu
For instance, whenhi

C.0, ; i , the probability forh1 being
the smallest is given by

P~h1
C,h2

C ,h1
C,h3

C!5E
0

`

P~h1
Cuh1

A ,h1
B ,$r,Q%!dh1

C

3E
h1

C

`

P~h2
Cuh2

A ,h2
B ,$r,Qt%!dh2

C

3E
h1

C

`

P~h3
Cuh3

A ,h3
B ,$r,Q%!dh3

C ,

~41!

where the conditional probabilities are given by Eq.~19!.
The generalization to other cases in whichhi

C is not nec-
essarily positive, is straightforward. We choose at rand
two specific local fields for the two partieshi

A andhi
B , from

their joint probability distribution which is derived from th
correlation matrix, making use of the overlap between
parties’ units. We then proceed to calculate the probability
each unit of the attacker to be the one with the lowest ab
lute local-field value, given by Eq.~41!. Once we havePi ,
i 51,2,3 (Pi is the probability that uniti has the lowest local-
field value!, we use an auxiliary random numberpa , to
choose the unit to be flipped,

FIG. 8. The distribution of the ratioR5t learn /tsynch, obtained
by simulations~dashed line! with N5103, and analytical~solid
line! results, withL53, averaged over 104 runs.
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t̂ i5t iF122uS pa2(
j 51

i 21

Pj D uS (
j 51

i

Pj2paD G , ~42!

whereP050.
Simulations and analytical calculations withL53, N

5103 averaged over 104 runs, indicate that the flipping at
tacker is successful. In Fig. 7 we plotted the synchroniza
time and learning time distribution for the flipping attac
obtained by simulations~circles for synchronization and
squares for learning! and analytical calculations~squares for
synchronization and triangles for learning!. The flipping at-
tacker’s ability can be measured by the ratio of the attac
learning time and the parties’ synchronization time,R
5t learn /tsynch. Figure 8 shows the distribution of this rati
for simulations~dashed line! and analytical~solid line! re-
sults. The probability of the flipping attacker to finish lear
ing before synchronization is achieved by the parties is 28
as presented in Fig. 8.

E. Discussion

In the preceding section we introduced macrodynam
updating equations that imitate the simulation results of d
crete mutual and dynamic learning. All numeric runs of t
macrodynamical equations are in good agreement with si
lations. The TPMs that perform mutual learning synchron
in a finite number of steps that scales with lnN @11#. The
macrodynamical updating equations describe the system
the limit of N→`, and they result in an exponential decay
the order parameterr to 21, where receiving the exac
value of 21 depends on computer accuracy. However,
fining the synchronization by any finite and close to21
t

nt
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value, results in a synchronization state that is achieved
finite number of steps even in the thermodynamic limit. T
good fit in that limit between analytical results and simu
tions results is indicated in Figs. 6, 7, and 8. We presen
here analytical results in the case of continuous as wel
discrete weight vectors. Recently,@11# the scaling betweenN
and L was discussed, based on large scale simulations
differentL andN values. It may be interesting to develop th
numerical equations in the limit of infiniteL and to find the
appropriate interplay between these two quantities.

We conclude by presenting the potential of the TPMs
serve as a public key cryptosystem. This is based upon
following features: the synchronization state may serve
the key in a certain encryption and decryption rule. This k
evolves in public without the need of prior communicatio
one needs only to perform a finite number of steps of
changing inputs and outputs in order to converge to a s
chronized state. The analytical derivation shows that even
infinite large systems,N→`, there will be finite distribution
of synchronization times~where synchronization time is de
fined by r5211e where smalle is a coefficient! and the
synchronization time itself will be finite. The flipping at
tacker succeeds in revealing the secret for smallL values, as
L enlarges the task becomes harder for her@11#. It is yet to be
determined whether it is possible to make better use of
information in the channel, and to device a strategy that p
forms perfect learning on the average in the same numbe
steps typical for synchronization even for largeL.
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